Close Tue:	14.7(2),15.1
Close Next Thu:	$15.2,15.3$ (integrating!)
Close Tue, May 16:	15.4, 15.5 (finish early)
Exam 2, May 16	
Office Hours Today: 1:30-3:00pm (Com B-006)	

Entry Tasks: Here are three old exam problems about local max/min, I will do one in class, see how far you can get before we start:

1. Find and classify all critical points for

$$
f(x, y)=x^{2}+4 y-x^{2} y+1
$$

2. Find and classify all critical points for

$$
f(x, y)=\frac{9}{x}+3 x y-y^{2}
$$

3. Find and classify all critical points for

$$
f(x, y)=x^{2} y-9 y-x y^{2}+y^{3}
$$

Global Max/Min

Consider a surface $f(x, y)$ over a particular region R on the xy-plane.

An absolute/global maximum over R is the largest z-value over R.
An absolute/global minimum over R is the smallest z-value over R.
Key fact (Extreme value theorem) The absolute max/min must occur at either

1. A critical point, or
2. A boundary point.

Example: Let R be the triangular region in the $x y$-plane with corners at $(0,-1)$, $(0,1)$, and $(2,-1)$.
Find the absolute max and min over this region R for the surface:

$$
f(x, y)=\frac{1}{4} x+\frac{1}{2} y^{2}-x y+1
$$

Step 1: Critical points inside region.

Step 2: Boundaries (the triangle has 3). For each boundary:
i) Give equation in terms of x and y.
ii) Intersect with surface (substitute).
iii) Find critical numbers and endpoints ("corners") for this one variable function.

Step 3: Evaluate the function at all points you found in steps 1 and 2.

Biggest output = global max
Smallest output = global min

In applied optimization problems,
(a) Label Everything.
(b) Optimizing what? (objective)
(c) Any given facts? (constraints)
(d) Use the constraints and labels to give a $\mathbf{2}$ variable function for the thing you are optimizing (your objective).
(e) Find the critical points of your objective.

HW Examples:

1. Find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to $(4,2,0)$.
Objective: Minimize distance from
(x, y, z) points on the cone to the point $(4,2,0)$ given that $z^{2}=x^{2}+y^{2}$.
2. Find the dimensions of the box with volume $1000 \mathrm{~cm}^{3}$ that has minimum surface area.
Objective: Minimize surface area given that volume is 1000 .
3. The bottom of an aquarium is made of slate which cost $\$ 2$ per square inch. The sides are made of glass and costs $\$ 20$ per square inch. There is no top. Find the dimensions of the aquarium with volume 100 sq. inches that minimizes cost.
Objective: Minimize cost given that volume is 100 .

15.1/ 15.2 Double Integrals over Rectangles

 Goal: Give a definition for volume "under" a surface and write this volume in terms of integrals.
Example:

Consider the volume under the surface

$$
z=f(x, y)=x+2 y^{2}
$$

and above the rectangle
$R=[0,2] \times[0,4]=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 4\}$

Let's approximate this volume.
(a) Draw the region R in the $x y$-plane and break it into 4 sub-regions; $\mathrm{m}=2$ columns and $\mathrm{n}=2$ rows.
(b) Approximate using a rectangular box over each region.

In general, we define:
$\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}, y_{i j}\right) \Delta A$
$=$ the 'signed' volume between $f(x, y)$ and the $x y$-plane over R.
If $f(x, y)$ is above the $x y$-plane it is positive. If $f(x, y)$ is below the $x y$-plane it is negative.

Other quick applications:

$$
\begin{gathered}
\iint_{R} 1 d A=\text { Area of } \mathrm{R} \text { and } \\
\frac{1}{\text { Area of } \mathrm{R}} \iint_{R} f(x, y) d A=\text { Average value } \\
\text { of } \mathrm{f}(\mathrm{x}, \mathrm{y}) \text { over } \mathrm{R}
\end{gathered}
$$

General Notes and Observations:
$z=f(x, y)=$ height on surface
$R=$ the region on the $x y$-plane
$\Delta A=$ area of base $=\Delta x \Delta y=\Delta y \Delta x$
$f\left(x_{i j}, y_{i j}\right) \Delta A=$ (height)(area of base)
$=$ volume of one approximating box

Units of $\iint_{R} f(x, y) d A$ are
(units of $f(x, y)$)(units of x) (units of y)
15.2 Using Iterated Integrals to Compute If you fix x :
The area under this curve is given by

From Math 125,
$\operatorname{Vol}=\int_{a}^{b} \operatorname{Area}(\mathrm{x}) d x=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x$
$\mathrm{Vol}=\int_{c}^{d} \operatorname{Area}(y) d y=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y$
If you fix y : The area under this curve is given by

$\int_{a}^{b} f(x, y) d x=$| "cross sectional area |
| :---: |
| under the surface at |
| this fixed y value" |

號

Examples (like 15.2 HW):

1. Find the volume under $z=x+2 y^{2}$ and above the rectangular region $0 \leq x \leq 2, \quad 0 \leq y \leq 4$
2. $\int_{0}^{3} \int_{0}^{1} 2 x y \sqrt{x^{2}+y^{2}} d x d y$
3. Find the double integral of

$$
f(x, y)=y \cos (x+y)
$$

over the rectangular region
$0 \leq x \leq \pi, \quad 0 \leq y \leq \pi / 2$

